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ON THE TIME-~EPE~~E~T Lh@QUE PROBLEM* 
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Abstract-The classical steady state LCvique problem is generalized to include the time dependence. 
Exact analytical solutions are presented for the surface heat flux due to a time step in the surface tempera- 
ture and for the case of the surface temoerature due to a time sten in the wall heat flux. The initial and 
final time behavior of the solution is explored analytically and-this is supplemented by a numerical 
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evaluation for the entire time span in the case of a step in the surface temperature. 

NOMENCLATURE t+, = t L&G ; 
Airy function ; u, fluid velocity component in X- 
derivative of the Airy function; direction ; 
zeros of the Airy function Ai ; El co? free stream fluid velocity compon- 
zeros of Ai’ ; ent in x-direction ; 
asymptotic representation of en; 0, fluid velocity component in y- 
error term in equation (28) and direction ; 
given by equation (30) ; X, distance along the wall; 
modified Bessel function of the first x +, = xpuQvq) ; 
kind, order v ; Y, distance perpendicular to the wall ; 
modified Bessel function of the y+, = yu~~~~v. 
second kind, order v ; 
therma conductivity of the fluid ; Greek symbols 
Laplace transform variables ; a, = 9(3 48)‘); 
prescribed wall heat flux ; r, gamma function ; 
wall heat flux for the case of pre- K, thermal diffusivity of the fluid; 
scribed wail temperature ; V, kinematic viscosity of the fluid ; 
steady state wall heat flux; 6 density of the fluid ; 
residue, given by equation (19); 6, Prandtl number, (V/K); 
temperature rise over that at in- T+, = t+/(x+)+; 
finity ; TO> wall shear stress. 
= T/T, for the case of a prescribed 
wall temperature; Subscripts 
= Tk u, a*/qov, for the case of a w, conditions at the wall ; 
prescribed wall ; ss, steady state conditions. 
= time; 

INTRODUCTION 
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devices. A detailed review is given in [l] for 
what has been done in this area of transient 
forced-convection heat transfer. Only some of 
the works, dealing with the case of external flow, 
i.e. flow over a surface which may be of boundary 
layer type, will be mentioned in the following. 

Cess [2] dealt with the case of incompressible 
laminar boundary layer flow over a flat plate 
with a step jump in wall temperature. Cess used 
the series expansion of the Blasius velocity 
function near the wall. He obtained series 
solutions for the wall heat flux for short and for 
long times and these were joined together in the 
Laplace transform plane by an approximate 
method. Upon inverting back to the physical 
plane a solution was obtained valid for all time. 
Goodman [3] attempted the same problem as in 
[2] and the wall heat flux was determined by the 
integral method. Riley [4] treated again the 
same problem. He used also the series expansion 
of the Blasius velocity function near the wall and 
found the solution for small times, in the form 
of a series in powers of r* where r = u&/x. The 
first two terms agree with those of Cess [l]. For 
large times, or more precisely, in the final 
approach to the steady state Riley showed that 
the departure from the steady state is concen- 
trated near the wall. Therefore the velocity 
components were again replaced by their values 
near the wall and it was shown that the steady 
state is attained in an exponential manner. 
Chambre [S] treated the problem of slug flow 
(i.e. uniform velocity distribution) over a flat 
plate of appreciable thermal capacity which 
contained time-dependent heat sources. A closed 
form solution for the transient surface tem- 
perature was obtained by double Laplace trans- 
formation methods. An analysis was presented 
by Chao and Jeng [6] for the unsteady, incom- 
pressible. laminar forced-convection heat trans- 
fer at a two-dimensional and an axisymmetrical 
(front) stagnation point due to an arbitrarily 
prescribed wall temperature or heat flux vari- 
ation. Two asymptotic solutions valid for small 
and large times, respectively, were found and 
joined. The key to the small time solution is the 

change of the energy equation in the Laplace 
transform plane to an ordinary differential 
equation with a large parameter which is treated 
accordingly. For large times the energy equation 
was integrated and the method of steepest 
desceqt was used in the evaluation of the 
integrals. Chao and Jeng suggested the use of 
their method to other problems. As examples 
they show results of their technique when 
applied to the problem of [Z], [3] and [4]. 

None of the above works, except for [5] 
(uniform velocity distribution), offers an exact 
solution uniformly valid at all times. The present 
analysis treats the time dependent Leveque 
problem which is described in the next Section. 
The simple nature of this problem allows us 
to carry on an exact analysis. The closed 
form solution obtained may serve as a reli- 
able reference to check techniques developed 
for the treatment of more complicated prob- 
lems. 

THE STATEMENT OF THE 
PROBLEM 

The present analysis is based on the assump- 
tion of a linear velocity profile. Hence, the 
results obtained should hold whenever this 
assumption is realistic, e.g. in both cases of 
laminar and turbulent flows when the Prandtl 
number c is very large or more precisely when 
IT -+ cc. The starting point is the laminar form 
of the energy equation 

t > 0, x > 0, y > 0. 

Here the co-ordinates (x, y) are measured along 
and normal to the wall respectively and (u, a) 
represent the velocity components in these 
directions. The viscous dissipation and axial 
conduction are neglected in equation (1) and the 
physical properties are assumed constant. The 
last assumption restricts the analysis to small 
temperature changes. For a time step in the 
wall temperature of magnitude T, the side 
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conditions for T(t, x, y) are defined by 
T(O,x,y)=O, x>o, y>o; 

T(t, 0, Y) = 0, t > 0, y > 0; 1 cp(s,P,Y+) = 
,_, 

LZX+dPf+{T+(t+, x+, y’)} 

= c!Tt+LZx+{ T+(t+, x+, y’)} T(t,x,O)=T,, t>o, x>o; 

i 

ILI 

qt, x, 00) = 0, t > 0, x > 0. 

Consider the linear velocity profile u = r,y/p, 
where the wall shear stress r,, is assumed to be 
constant. Hence from the continuity equation 
one readily sees that u = 0. The neglect of the 
term u(S”/ay) results in a considerable simpli- 
fication of equation (1). Introducing the following 
dimensionless variables : 

Xf _ XPUi 
VT0 ’ 
2 

t+ _ tU, T+ = f 
(3) 

VU+ 
and 

W 

equations (1) and (2) reduce to 

aT+ + aT+ a2T 
at++y ax+=ay+2 1 (4) 
t+ > 0, x+ > 0, y+ > 0 J 

T+(O, x+, y’) = 0, 

T+(t+, 0, y’) = 0, 

T+(t+, x+, 0) = 1, 

T+(t+, x+, co) = 0, 
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- px+) dt+ dx+. (7) 

Details of this method are given in [7]. If one 
applies the integral operator (7) to equation (4) 
one obtains, by using the side conditions (5) 
the ordinary differential equation for the trans- 
form cp 

d2v 
dy+2 - (s + py+)q = 0. 

Equation (6) when transformed to the (s, p, y’) 
domain becomes 

cp(s, P? 0) = l/W cp(s, p, co) = 0. (9) 

Now let 

p = s +py+ (10) 

X >v, y >o; I- 
then for cp(s, p, p) the relations (8) and (9) reduce 

t+ > 0, y+ > 0 (5) to 

t+ > 0, x+ > 0; 

t+ > 0, x+ > 0. 
> 

d2q P _ o 
dpZ-pZ(P- (11) 

(6) 
cp(s, P, 4 = l/v, cp(S,P, 00) = 0. (12) . . . 

The purpose of the present analysis is to 
obtain an exact solution for the wall heat flux 
based on the system of equations (4) to (6). The 
determination of the wall temperature in the 
case of a time step in the wall heat flux is closely 
related to the above problem and the results for 
this case are given at the end of the paper. 

The differential equation (11) is satisfied by 
the Airy function [S]. The particular solution to 
this equation which obeys the condition at 
infinity is 

cp(s, P, P) = C Ai( (13) 

C is evaluated from the boundary condition at 
the wall (y’ = 0, i.e. p = s) with the result that ANALYSIS 

The present problem is solved by application 
of a double Laplace transformation with respect 
to the variables tt and xt. Their images are 
denoted by s and p respectively. Provided the 
transformation of the temperature function 
T’(t+, x+, y’) exists, (_v’ is treated as a para- 
meter), the double Laplace transform of Tt is 

cph P> PI = 
Ai 

sp Ai(s/p*)’ (14) 

In the present problem the main interest lies 
in the evaluation of the wall heat flux, 
4, D’-L k(aT/ay) (t, x, O), which in the transform 
domain is defined by 
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From equations (14) and (15) one computes 

- P - 6% $4 4 = _fts, $4 
dp 

1 Ai’(s/p*) = --~ 
sp* Ai(s/p*)’ 

(16) 

The function~(s, p) is hoiomorphi~ in the upper 
right-hand quadrants of the (s,p)-planes if 
a(s) > 0 and B(p) > 0, where W denotes the 
real part of s or p. 

The major task now is to invert equation (16) 
to the physical (t’, x+) domain. According to 
the properties of the double Lapiace transform 
[7] the order of inversions with respect to s and p 
can be interchanged. In the following the function 
f(s, p) will first be inverted with respect to s 
treating p as a parameter. This inversion is 
denoted by _Yia; I. 

The functions Ai and Ai’ are both entire 
functions of s, [8]. They have a sequence of 
simple zeros on the negative real axis and no 
zeros elsewhere. The zeros of Ai’ are different 
from those of Ai. Hence the function f(s, p) for 
ye@) > 0 is an analytic function everywhere 
in the s-plane except for an infinite number of 
isolated singularities (simple poles) on the 
negatit-e real axis at s,(n = 0, 1,2,. . .). Note that 
s0 is the singularity at s = 0 caused by the factor 
l/s in equation (16) while s, = - cs9’ for 
n > 1, with B?‘(p) > 0. If r&t+, p) is the residue of 
exp (st+)f(s, p) at s = s, the inversion off@, p) 
with respect to s may be written as, [9] p. 186. 

2, ‘(f’@,P)) = F(t+,p) 

= nzO r&t+,&, t+ > 0, 5U.p) > 0 . (17) 

To calculate the residues r,(t’,p) the function 

exp (st+)f(s, p) is expressed in the form 

where 

P(s, p) = - Ai’(s/p*) 

and 

Q(s, P) = sp~Ai(s/p~). 

The analytic functions exp (st ’ ) P(s, p) and Q(s, p) 
satisfy the conditions Q(s,, p) = 0, Q’(s”, p) # 0 
and exp (s,t+) P(s,, p) # 0. The residue of 
exp (st+)f(s, p) at the simple pole s, has the 
value 

r,(t+, P) = 
exp (s,t + 1 p(sn9 P) 

Q’(sm PI ’ 
n 2 0, t+ > 0, s?(p) > 0. J ( 19 ) 

Using the equations (17), (18), (19) and the values 

Ai(0) = 1/[3’ I#)], 

Ai’(0) = - 1/[3” I?(+)], 

one obtains for the first inversion step 

3” I-($ 1 
F(t+,p) = ~ - 

( > I% P’ 
m, 

+ c -$ exp [ - (c,t + 1 p+], 
n 

ZZ=l 

t+ > 0, B(p) > 0. (20) 

The c,, are the zeros of the Airy function. The 
first fifty values of c, have been calculated by 
Miller 181. 

Turning next to the inversion with respect to 
p, i.e. ,Lp; ‘, one can see that the main problem 
in inverting equation (20) lies in the inversion 
of the typical term 

r&+, P) = --&exp II- (u+)Pl 

for n 2 1, tf > 0 and S%!(p) > 0. (21) 

This inversion is carried out using the standard 
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inversion integral, 

yo-iCO 

exp [x+p - (c,t+)p+] dp, tf > 0, x+ > 0. 

(22) 

The integration in equation (22) is taken along 
the Bromwich path in the p-plane, i.e. along 
p = y0 + ip. This integral is shown in the 
Appendix to reduce to the Airy function of 
square argument and the result of the inversion 
is 

exp ;(cnt+,x++)3 A ] i [(c.t+$+‘)z]. (23) 

The steady state solution of the wall heat flux 

4 w1 ss, (i.e. the solution of equation (4) when the 
transient term c?T+/&+ vanishes), was given by 
Tribus and Klein [lo], and has been also derived 
here independently as 

qW. ,,(x+)+ v/u, T,ka* = -?- 
N)’ 

(24) 

Hence the final result for the ratio of the time 
dependent heat flux at the wall to its steady state 
value (~,,,/cI,, ,J may be written in the physical 
r+ plane where rf = t+,@, with help of equa- 
tions (15), (20), (23) and (24) as 

(25) 
This expression represents the exact analytical 
solution for the surface heat flux deduced from 
the partial differential equation (4) and the side 
conditions (5) and (6). 

The first term on the rift-end side of 
equation (25) corresponds to the steady state 
part of the solution. The deviation from the 
steady state is accounted for by the infinite 

series. The number of terms required for the 
numerical evaluation of the series depends on 
how fast the exponential terms tend to zero. 
Therefore the smaller the values of (c,r+) is 
the more terms in the series are needed. In the 
limit as z+ -+ 0 the form of equation (25) 
becomes unsuitable for numerical computations. 

REARRANGEMENT AND NUMERICAL 
EVALUATION OF THE SOLUTION 

Equation (25) can be expressed in a form 
more convenient for numerical computations 
if one uses the fact that the zeros of the Airy 
function are represented asymptotically by the 
simple expression [8] 

&=[%(4n- 1)11. (26) 

For n 2 7 the values of c, can be calculate to 
five significant figures from equation (26). 
Equation (25) can be re-written with help of this 
representation as 

4Wl%v, SS = 1 + Ai + Aa (27) 

where Ai is the sum of the first six terms and A,, 
is the remainder of the infinite series. The values 
of c, in A, are replaced by their asymptotic 
expression E,. Using the trapezoidal formula for 
the approximate evaluation of integrals, [11] 
p. 215-220 and El], A, can be represented by 

Ait = N(rf) + A, (r’) + E(z+) 

where 01 = 9(3#8)*. 
N(r+) represents the first, A,&+) the second 

and E(z+) the third term on the right-hand side 
of the equation (28). The error term E(z+) is 
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Table 1. The numerical evaluation ofequation (35) 

t+ 

oQO2 
0.004 
OGO6 
0008 
0,010 
0,020 
0.040 
@060 
0.080 
0.100 
0.120 
0.140 
0,160 
0.180 
0,200 
0.250 
0.300 
0.350 
0400 
0.450 
0.500 
0.550 
0.600 
0,650 
0,700 
0,750 
0,800 
0.850 
0,900 
0,950 
I.000 
I.100 
1.200 
1,300 
I ,400 
I.500 
I.600 
1.700 
1.800 

0.5867 0.3355 0.2485 0.202 1 0.1727 0.1520 20.666 0.0683 
0.5867 0.3355 0.2485 0.2021 0.1726 0.1520 13.803 0.0683 
0.5867 0.3355 0.2485 0.2021 0.1726 @1520 10.763 0.0683 
0.5866 0.3355 0.2484 0.2020 0.1726 0.1520 8.9503 0.0682 
0.5866 0.3355 0.2483 0.2020 0.1725 0.1518 7.7137 0.0682 
0.5865 0.3352 0.2479 0.2015 0.1719 0.1511 4.6473 0.0678 
0.5858 0.3339 0.2462 0.1993 0.1693 0.1482 2.4898 0.0661 
0.5846 0.3318 0.2432 0.1955 0.1647 0.1428 1.5513 0.063 1 
0.5829 0.3287 0.2388 0.1898 0.1579 0.1349 1.0122 0.0586 
0.5807 0.3245 0.2328 0.1822 0.1488 0.1244 0.6665 0.0527 
0.5780 0.3192 0.2252 0.1726 0.1374 0.1115 0.4344 PO457 
0.5746 0.3127 0.2161 0.1611 0.1240 0.0967 0.2764 0.0379 
0.5706 0.3050 0.2053 0.1479 0.1090 0.0808 0.1700 0.0298 
0.5660 0.2962 @I930 0.1332 0.0932 0.0648 0~1001 0.0222 
0.5608 0.2861 0.1795 0.1176 0,077 1 0.0500 0.0559 0.0155 
0.5448 0.2561 0.1413 0.0778 @0408 0~0200 0.0045 0.0099 
0.5250 0.2203 0.1013 00433 0.0164 0.0054 0~0011 WOO08 
0.5001 0~1809 0.0650 0.0196 om47 0~0009 0.000 1 0.000 1 
0.4715 0.1408 0.0366 0~0070 0~0009 0~000 1 0~0000 0~0000 
0.4392 0.1032 0.0178 0.0019 0.000 1 0~0000 0 0 
0.4036 0.0707 oGO73 0~0004 oGOoo 0 0 0 
0.3656 ow50 0.0025 oGOo 1 0 0 0 0 
0.3259 0.0263 oQOo7 0 0 0 0 0 
0.2856 0.0141 oGOo2 0 0 0 0 0 
0.2457 0.0068 OGOOO 0 0 0 0 0 
0.2073 OeO30 0 0 0 0 0 0 
0.1712 0.0012 0 0 0 0 0 0 
0.1383 0~0004 0 0 0 0 0 0 
0.1091 0mO1 0 0 0 0 0 0 
0.0839 0~0000 0 0 0 0 0 0 
0.0628 0 0 0 0 0 0 0 
0.0323 0 0 0 0 0 0 0 
00147 0 0 0 0 0 0 0 
OGO58 0 0 0 0 0 0 0 
oGO2o 0 0 0 0 0 0 0 
OGOO6 0 0 0 0 0 0 0 
OGOO 1 0 0 0 0 0 0 0 
oQOoo 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

N E 

0~0011 
0.00 11 
~0011 
0.00 1 I 
0.001 I 
0.0011 
00010 
oQOo9 
00009 
oGOo9 
00009 
oQOO9 
oGOo9 
oQOo7 
oeOo3 
qoO0 1 
0~0000 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Ywi4w. I. 

23.433 
16.570 
13,530 
Il.717 
IO.480 
7.4103 
5.2396 
4.2779 
3.7047 
3.3135 
3G249 
2.8004 
2.6193 
2.4694 
2.3428 
2.0953 
1.9136 
1.7714 
I.6569 
I .5622 
I .4820 
I.4132 
1.3529 
1.2999 
1.2525 
1.2103 
I.1724 
I.1387 
1.1092 
I .0839 
I .0628 
1.0323 
I.0147 
1.0058 
1.0020 
I.0006 
1~0001 
1 .oOOO 
I ,oOOo 

shown in [ 1 l] and [l] to be bounded by at short times as will be seen in Table 1. Thus 
equation (29) reduces to 

. + 1 

Carrying out the above differentiation results in 

@+) = 214”)exp ‘iif[,(l:!, (30) 

three terms. The terms which are multiplied by It is shown in [l] that the product of the ex- 
(t’)’ and (T’)~ may be neglected. This is due to ponential and the Airy functions, which have 
the fact that& and E(z+) are only of importance appeared repeatedly above, can be expressed 
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in the infinite series form 

3+exp [- &(cnr+)3] Ai [($r+>3 

00 

= 
c 

ml $I$) (c”r+)“. (31) 
m=O 

In order to evaluate the integral N(z+) in 
equation (28), one first uses the substitution 

;[($ln - 1)%+13 = z. (32) 

With this 

qw 
%!SS 

&,arf)’ - s (33) 

0 

The first integral can be readily evaluated if Ai 
is expressed in terms of K,. If Ai is expressed in 
terms of I_, and I, in the second integral one 
can rewrite it as an infinite series of the modified 

“V 

7.0 

6.0 

- Equation (35) 

--- One dimensional 
conduction, equailon (37) 

--- Asymptotic solution, 
equation (38) 

5-o 

4.0 ' 

3.0 

2.0 

I.0 

01 I I I I I 
0 0.25 0.50 0.75 I.0 I.25 I.50 

t+ 
T+=T 

(x+1 I’ 
FIG. 1. Heat-transfer response to a step in wall temperature. 
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- Equation (35) 
--- One dimensional conduction, 

equation (37) 

1.10 

I.0 

0.5 06 07 0.8 0.9 I.0 I.10 I.20 I.30 I.40 1.’ 

FIG. 2. Heat-transfer response to a step in wall temperature. 

0 

Bessel functions of the first kind, see [ 121 pp. 100 E is given by equation (30). The individual terms 
and 107. However the final result is obtained in in equation (35) have been evaluated numerically 
a more compact form if the relationship (31) is on an IBM 7094 computer and the results are 
substituted in the second integral and the inte- presented in Table 1 together with the ratio 
gration is carried out. One obtains then q,,,/q,,,. ss which is also shown in Figs. 1 and 2. 

N@+j = a_!__ _ 2.3+ I-($, JLX 

X 

’ 3J& Jr+ n 
CT, 

c 

(-1)” 
(2m + l,m!r($-+I) 

(ar + }“. (34) 

m = 0 

The ratio 4JqW. S can now be expressed in a . . _ . _ 
form which is more suitable for numerical 
computations, for small values of r+, than the 
form given in equation (25) i.e. 

4W/%v. SS = 1 + A, + A2 + ‘4, + A, 
+ AS + A, + N -I- A, + E. (35) 

The terms -k2....6 are the first six terms of the 
infinite series in equation (25). N is defined by 
equation (34), A, is defined in equation (28) and 

DISCUSSION 

The present solution for the surface heat flux 
has been obtained by a double Laplace trans- 
formation. Equation (25) represents the exact 
analytical solution while equation (35) expresses 
the result in a convenient computational form 
within the error term E which is shown from 
Table 1 to be extremely small. 

The terms N, A, and E correspond to the 
remainder of the series for n 3 7 (i.e. A, of 
equation 27). Their effects are shown in Table 1 
to be of importance only at short times. The 

terms Ai, 2.. .6 0.e. 4 are the transient contri- 
butions at large times. Each of these terms. 
starting with Ah, tends to zero as r+ gets larger 
(see Table 1). The value 4,+,/q,,,. ss = 1 is attained 
to live significant figures at z+ = 1.7. It may be 
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noted that the Prandtl number does not appear 
as a separate parameter in the present problem. 
The wall heat flux q,,, is shown by equations (24) 
and (25) to be proportional to o* at all times. 

In order to examine the behavior of the 
solution for short times, it is expanded in powers 
of z+. The result is, [l], 

1.0480 
%/4w.ss = ~ 

yir’ 
- 0.1376 + 0 * (Tf) 

+ 69177 (2’)2 f 10,029 (r”)3 

- 0.(r+)4.. . (36) 

Equation (36) shows that the solution is ex- 
pressed, from the second term on, in integer 
powers of t ‘. The first term on the right-hand 
side of equation (36) appears as a result of the 
use of the asymptotic form of the zeros of the 
Airy function. It may be of interest to note that 
analyses such as the one by Cess [2] and Riley 
[4] have proceeded by assuming a priori a series 
form of the wall heat flux as a function of r+. 
This is not required in the present analysis. 

As z+ --) 0, equation (36) reduces to 

1.0480 
4W/%.SS N -1 

Jr’ 
(37) 

The above result is identical to the response of 
the surface heat flux of a semi-infinite solid when 
its boundary is suddenly brought to a tem- 
perature T, for t > 0. The same observation was 
noted in references [2-51 and many others. 

For large times the only term which controls 
the approach to the steady state, as seen from 
Table 1, is A,. If one uses the asymptotic 
expansion of the Airy function, as r+ 3 GO 
equations (35) or (25) reduce, in the final decay 
to the steady state, to 

3f I-($ 1 
4W/&.SS N 1 -f- ~ ~ 2J7c Cl (Cl r+)* 

exp [- $ (cl*+) j. (38) 

Equation (3%) shows that the steady state is 
approached exponentially. A similar conclusion 
was reached by Riley [4]. Equations (37) and (38), 

M 

valid for small and for large times respectively, 
are shown also in Figs. 1 and 2. 

At last we outline the method for the deter- 
mination of the surface temperature due to a 
time step q. in the surface heat flux. In this case 
a dimensionless temperature is defined by T+ = 
T k u, a*/q,v and together with the variables 
introduced in equation (3) there result once 
more the equations (4) and (5) while the first 
boundary condition in equation (6) is replaced 

by 

- $(t+, x+, 0) = 1, t+ > 0, 

x+>o. (39) 

Foflowing the steps in the Analysis Section one 
derives in place of equation (14) the following 
expression for the transformed dimensionless 
surface temperature in the (s, p) domain. 

rp(st P, 4 = - 
Aitdp”) 

sp3 Ai’(s/p*) WV 

The inversion with respect to s yields then 

- 
t 

$$i ev [ - W + PI y 
n 

PI=1 

t+ > 0, L@(p) > 0 (41) 

where the e; are the zeros of Ai’ and are tabulated 
in [S]. 

If one compares the infinite series part in 
equation (41), i.e. F1 ,Jt+, p; ch) with the corres- 
ponding term in equation (20), i.e. F,(t+, p; c,) 
one deduces the following relationship between 
the two functions 

Fl,(t+, p; c;) = 7 F,(t+, p; c;) dt+. (42) 
t+ 

On interchanging the order of integration the 
inversion with respect to p yields then 

~‘uLAt+~P; 41 

= I aY;‘{F,(t+, p; CA)> dt+. (43) 
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However, the inversion of the integrand on the 
right-hand side has already been carried out in 
the Analysis Section and one has only to replace 
the value of c, by CL in this result according to 
equation (43). On inverting also the first term in 
equation (41) one obtains finally the quotient of 
the transient surface temperature to its steady 
state value 

Ai[(cAz’/3$)2] dz 

(44) 
where 

T,,,, k u, a+ 3+ 

9ov 
= r6, (X’Y. 

The integral in equation (44) can be readily 
computed [12]. Making use of the asymptotic 
representation for the zeros of Ai’, i.e. ck one may 
rearrange equation (44) in a form comparable 
to equation (35) and obtain a useful form for 
numerical evaluation. 

CONCLUSION 

Exact analytical solutions have been obtained 
for the classical time-dependent LCvCque prob- 
lem described by equation (4). These solutions 
may serve as a reliable reference to check 
techniques developed for the treatment of more 
complicated problems. The initial behavior of 
the solution reveals that for small times the 
heat-transfer process is controlled bj one 
dimensional diffusion. For large times the solu- 
tion demonstrates that the steady state heat- 
transfer process is approached in an exponential 
manner. 
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APPENDIX 

Evaluation of the inversion integral 
Consider the two Argand planes p = y + ip, 

u = 1 + iw and let 

? = P+ (A-1) 

in equation (22) with the result 

exp(x+q3 - t+q2) dy (A-2) 

where D, is the mapped Bromwich path (i.e. 
y = yo) in the q-plane. The principal branch of 
p* maps the entire p-plane into the sector 
bounded by the dashed lines in Fig. 3. If 
equation (A-l) is expressed in terms of real and 
imaginary parts there follows that the equation 
of the path D, is given by 

I?3 - 3/Iw2 = yo . (A-3) 
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w t / 

FIG. 3. The v-plane. 

The path D, is shown in Fig. 3, together with 
its asymptotes which make an angle &rc/6 with 
positive real axis. 

Now, choose y0 = (cJ’/~x’)~ and use the 
mapping function 

6 = 2 + i @ (A-4) 

in equation (A-Z) to get 

(rj - frj”) 1 I drj . (A-5) 

The equation of the path D2 may be easily 
obtained from equations (A-3) and (A-4) as 

(I - X)3 - 3S(l - X) = 1. (A-6) 

A straightforward aplication of Cauchy’s Theo- 
rem, shows that the path D, can be replaced by 
a path D3 running from cc exp( -2ni/3) to 0 
and then to co exp( + 2rci/3) as shown in Fig. 4 
together with the path D,. The term in brackets 

FIG. 4. The g-plane. 

in equation (A-5) with the integral taken along 
the path D3, is shown in reference [13] to be an 
integral representation of the Airy function of 
square argument. Hence equation (23) follows. 

Ssnm&--Le probltme cfassique de LhSque en regime permanent est generalise pour tenir compte de la 
dependance du temps. On presente des solutions analytiques exactes pour le flux de chaleur parittal dti 
a une variation en echelon dam le temps de la temperature parietale et pour la temperature parietale due 
& une variation, en echelon dans le temps du flux de chaleur pa&al. Le comportement initial et final est 
etudie theoriquement et pendant toute l’evolution temporelle, l’on y a ajoute une evaluation numerique, 

dans Ie cas d’un echelon de temperature par&tale. 

~~~-~s klassische station&e L~v~que-FrobIem wird verallgemeinert urn ~itabh~n~g- 
keiten zu beriicksichtigen. Exakte analytische Losungen werden angegeben fiir den WIrmefluss an der 
OberfBiche infolge eines Zeitschrittes in der Wandtemperatur und fib die Wandtemperatur bei einem 
Zeitschritt im Wlrmestrom. Das Anfangs- und Endverhalten der Losung wird analytisch untersucht und 
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durch eine numerische Auswertung fiir die gesamte Zeitspanne ergkzt fiir den Fall einer schrittweisen 
.&nderung der Wandtemperatur. 

AEHoTaqasr-ICnaccasecKan cTaJ&4oKapKaf? safiasa AeBeKa 0606tLIeHa ~v~fl CXyqafl C yqeTOM 
speMeKK& 3aBBc~MocTH. IIpaaeneHbI aaanrrTasecKHe petneKHn ~nFt HByx cnysaea : (1) 
TetIJIOBOfl IIOTOK CTeHKIIBbI3BaHBpeMeHH&MCKaYKOMTeMIIepaTypbl HaHeZt;(2)TeMnepaTypa 

lIOBepXHOCTI4 ObyCJIOBJIeHa BpeMeHH&$ CKaqKOM TeI,ZIOBO,'O IIOTOKa Ha Hen. HaqanbHOe M 

KoHesKoeBpeveKK6enoBe~erirtepeureHa~~~3y~a~Tc~aKa~~T~~ecK~,~~~icneHHoonpe~en~eTcrr 

nOJIHLdti IIepltOa BpeMeH&i@IH CJly'laR CKa'IKOO6pa3HOrO Il3MeHeHHR TeMIIepaTypbl CTeHKM. 


