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Abstract—The classical steady state Lévéque problem is generalized to include the time dependence.
Exact analytical solutions are presented for the surface heat flux due to a time step in the surface tempera-
ture and for the case of the surface temperature due to a time step in the wall heat flux. The initial and
final time behavior of the solution is explored analytically and this is supplemented by a numerical
evaluation for the entire time span in the case of a step in the surface temperature.
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NOMENCLATURE
Airy function;
derivative of the Airy function;
zeros of the Airy function Ai;
zeros of Ai';
asymptotic representation of ¢,;
error term in equation (28) and
given by equation (30);
modified Bessel function of the first
kind, order v;
modified Bessel function of the
second kind, order v;
thermal conductivity of the fluid;
Laplace transform variables;
prescribed wall heat flux;
wall heat flux for the case of pre-
scribed wall temperature;
steady state wall heat flux;
residue, given by equation (19);
temperature rise over that at in-
finity;
= T/T,, for the case of a prescribed
wall temperature;
= Tk u,, a*/qev, for the case of a
prescribed wall;
= time;
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tt, = tul/va?;

u, fluid velocity component in x-
direction;

Uy, free stream fluid velocity compon-
ent in x-direction;

v, fluid velocity component in y-
direction;

X, distance along the wall;

x*, = xpul /viy;

¥ distance perpendicular to the wall;

vy, = yu,o¥/v.

Greek symbols

a, = 93 n/8)};

T, gamma function;

K, thermal diffusivity of the fluid;

v, kinematic viscosity of the fluid;

e density of the fluid;

G, Prandtl number, (v/x);

t, = t"(x");

Tos wall shear stress.

Subscripts
w, conditions at the wall;
ss, steady state conditions.

INTRODUCTION

KNOWLEDGE of the characteristics of the un-
steady convective heat-transfer process is be-
coming more and more significant in the design
of control systems involving heat exchange
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devices. A detailed review is given in [1] for
what has been done in this area of transient
forced-convection heat transfer. Only some of
the works, dealing with the case of external flow,
1.e. flow over a surface which may be of boundary
layer type, will be mentioned in the following.
Cess [ 2] dealt with the case of incompressible
laminar boundary layer flow over a flat plate
with a step jump in wall temperature. Cess used
the series expansion of the Blasius velocity
function near the wall. He obtained series
solutions for the wall heat flux for short and for
long times and these were joined together in the
Laplace transform plane by an approximate
method. Upon inverting back to the physical
plane a solution was obtained valid for all time.
Goodman [3] attempted the same problem as in
[2] and the wall heat flux was determined by the
integral method. Riley [4] treated again the
same problem. He used also the series expansion
of the Blasius velocity function near the wall and
found the solution for small times, in the form
of a series in powers of ¥ where © = u,/x. The
first two terms agree with those of Cess [1]. For
large times, or more precisely, in the final
approach to the steady state Riley showed that
the departure from the steady state is concen-
trated near the wall. Therefore the velocity
components were again replaced by their values
near the wall and it was shown that the steady
state is attained in an exponential manner.
Chambré [5] treated the problem of slug flow
{i.e. uniform velocity distribution) over a flat
plate of appreciable thermal capacity which
contained time-dependent heat sources. A closed
form solution for the transient surface tem-
perature was obtained by double Laplace trans-
formation methods. An analysis was presented
by Chao and Jeng [6] for the unsteady, incom-
pressible, laminar forced-convection heat trans-
fer at a two-dimensional and an axisymmetrical
(front) stagnation point due to an arbitrarily
prescribed wall temperature or heat flux vari-
ation. Two asymptotic solutions valid for small
and large times, respectively, were found and
joined. The key to the small time solution is the
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change of the energy equation in the Laplace
transform plane to an ordinary differential
equation with a large parameter which is treated
accordingly. For large times the energy equation
was integrated and the method of steepest
descert was used in the evaluation of the
integrals. Chao and Jeng suggested the use of
their method to other problems. As examples
they show results of their technique when
applied to the problem of [2], [3] and [4].

None of the above works, except for [5]
(uniform velocity distribution), offers an exact
solution uniformly valid at all times. The present
analysis treats the time dependent Lévéque
problem which is described in the next Section.
The simple nature of this problem allows us
to carry on an exact analysis. The closed
form solution obtained may serve as a reli-
able reference to check techniques developed
for the treatment of more complicated prob-
lems.

THE STATEMENT OF THE
PROBLEM

The present analysis is based on the assump-
tion of a linear velocity profile. Hence, the
results obtained should hold whenever this
assumption is realistic, e.g. in both cases of
laminar and turbulent flows when the Prandtl
number ¢ is very large or more precisely when
o - oo. The starting point is the laminar form
of the energy equation

?I_*_u(x )_Cjzi_i..v(x )QZ»« 6_21 1
ot Y ax 'yaywké’yz’ (W

t>0, x>0, y>0

Here the co-ordinates {x, y) are measured along
and normal to the wall respectively and {u, v)
represent the velocity components in these
directions. The viscous dissipation and axial
conduction are neglected in equation (1) and the
physical properties are assumed constant. The
last assumption restricts the analysis to small
temperature changes. For a time step in the
wall temperature of magnitude T, the side
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conditions for T(t, x, y) are
TO,x,») =0, x>0, y>0;

T, 0,y) =0, t>0 y>0; ,
Tt,x,00=T,, t>0 x>0; @)
Tt,x,0)=0, t>0, x>0

Consider the linear velocity profile u = 74y/u,
where the wall shear stress 7, is assumed to be
constant. Hence from the continuity equation
one readily sees that v = 0. The neglect of the
term »{0T/0y) results in a considerable simpli-
fication of equation (1). Introducing the following
dimensionless variables:

3

xt = XPl= L Ly
VT, v o)

= % and TV = %
equations (1) and (2) reduce to

6Tt L OT* &T

ot TV T Ty @

t* >0, x*>0, y* >0
T7°0,x",y")=0, x* >0, y* > 0;
TH¢*,0,y")=0, t* >0, y* >0 } )
THet, xT,00=1, tt* >0, x* >0;
TH*Htt,xt,0)=0, t* >0, x* >0. } ()

The purpose of the present analysis is to
obtain an exact solution for the wall heat flux
based on the system of equations (4) to (6). The
determination of the wall temperature in the
case of a time step in the wall heat flux is closely
related to the above problem and the results for
this case are given at the end of the paper.

ANALYSIS

The present problem is solved by application
of a double Laplace transformation with respect
to the variables t* and x*. Their images are
denoted by s and p respectively. Provided the
transformation of the temperature function
TH(t*, x*, y*) exists, (y* is treated as a para-
meter), the double Laplace transform of T* is
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defined by
(p(S, ps y+) = $x+$t+{T+(t+’ X+, y+)}

$,+gx+{T+(t+, x+, y+)}

TH(e%, x*, y")exp(—st?

1]
O 8
Oty 8

— px*)det dx*. W)

Details of this method are given in [7]. If one
applies the integral operator (7) to equation (4)
one obtains, by using the side conditions (5),
the ordinary differential equation for the trans-
form ¢

2

Go-Gtme=0 ®)

Equation (6) when transformed to the (s, p, y*)
domain becomes

@(s,p,0 = 1/sp,  @s,p,0)=0. (9)
Now let
p=s+py* (10

then for ¢(s, p, p) the relations (8) and (9) reduce
to

d? p
d—p‘f — 30 =0 (11)
@, p,s) = 1/sp,  @(s,p,0) =0. (12)

The differential equation (11) is satisfied by
the Airy function [8]. The particular solution to
this equation which obeys the condition at
infinity is

o(s, p, p) = C Ai(p/p?). (13)

C is evaluated from the boundary condition at
the wall (y* = 0, i.e. p = s) with the result that

5. p. p) = Nilo/P*)
MY Y]

In the present problem the main interest lies
in the evaluation of the wall heat flux,
q,, == k(0T /dy) (¢, x, 0), which in the transform
domain is defined by

(14)
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Z"‘gt*{qu/umkaaé}
g

— 2.2, {—aT (", x* 0}}
ay*

__,d
- pa;(s!pa S)'

(15)

From equations (14) and (15) one computes

de
pdp 5, 0.5) = f(s,p)

1 Ai(s/p?)
sp? Ai(s/p?)

(16)

The function f{s, p) is holomorphic in the upper
right-hand quadrants of the (s, p)-planes if
A(s) > 0 and A(p) > 0, where # denotes the
real part of s or p.

The major task now is to invert equation (16)
to the physical (t*, x*) domain. According to
the properties of the double Laplace transform
[7] the order of inversions with respect to sand p
can be interchanged. In the following the function
f(s,p) will first be inverted with respect to s
treating p as a parameter. This inversion is
denoted by &%

The functions Ai and Ai' are both entire
functions of s, [8]. They have a sequence of
simple zeros on the negative real axis and no
zeros elsewhere. The zeros of Ai' are different
from those of Al Hence the function f{s, p) for
A(p) > 0 is an analytic function everywhere
in the s-plane except for an infinite number of
isolated singularities (simple poles) on the
negative real axis at s,(n = 0, 1, 2, .. ). Note that
5o is the singularity at s = 0 caused by the factor
1/s in equation (16) while s, = — c,p* for
n > 1, with (p) > 0. If r,(¢t*, p) is the residue of
exp (st*)f(s, p) at s = s, the inversion of f(s, p)
with respect to s may be written as, [9] p. 186.

LY S p)} = Fet,p)

= Z ritt.p, tt>0, Zp)>0. (17

To calculate the residues r,(t*, p) the function

exp (st™) f(s, p) is expressed in the form

exp (st*) P(s, p)

exp(st™)f (s, p) = 06, p)

(18)

where

P(s,p) = —Ai'(s/p?)

and

Q(s, p) = sp*Ai(s/p*).
Theanalytic functions exp (st *) P(s, p}and Q(s, p)
satisfy the conditions Q(s,.p) = 0, Q'(s,, p) # 0
and exp (s,t*) P(s,, p) # 0. The residue of

exp (st™)f(s,p) at the simple pole s, has the
value

exp (s,t 1) P(s,, p)
Qs p)
tt >0, Rp)>0.

rtt,p) =

nz=0, (19)

Using the equations (17), (18), (19} and the values
Ai(0) = 1/[3* r'é)l
Ai(0) = - 1/[3*TH)]

one obtains for the first inversion step

I @) 1
+ — o —— —_—
Fe ”’)_( r@)p*

1 s
+Z“EJP§GXP[ (eat ™) p*],

>0, Z(p)>0.

n=

(20)

The c, are the zeros of the Airy function. The
first fifty values of ¢, have been calculated by
Miller {8].

Turning next to the inversion with respect to
pie &, ! one can see that the main problem
in inverting equation (20) lies in the inversion
of the typical term

{eat ") p?]
t* >0 and 2Z(p)>0.

1
n(t >P) - -————CX
s pl-

for nz=1, 21)

This inversion is carried out using the standard
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inversion integral,

yotio
- 1 1
gp l{rn(£+a P)} = 2?!:!{.' ;;;;
yo—im
exp[x*p — (c,t*)p¥ldp, t* >0, x* > 0.

(22)

The integration in equation (22) is taken along
the Bromwich path in the p-plane, ie. along
p =7y, + if. This integral is shown in the
Appendix to reduce to the Airy function of
square argument and the result of the inversion
is

~1f + —
gp {?‘,,(t 9P)} - c,,(x*)*

+ A2
exp [— 2—27(c,,t+/x+*)3] Ai [__——(C"t ) ] 23)

The steady state solution of the wall heat flux
4.~ s» (i.€. the solution of equation (4) when the
transient term 0T ¥ /0t vanishes), was given by
Tribus and Klein [10], and has been also derived
here independently as

3
G X Vg Tk = o (24)

@y
Hence the final result for the ratio of the time
dependent heat flux at the wall to its steady state
value (q,/4,, ) may be written in the physical
t* plane where 7% = t*/x?, with help of equa-
tions (15), (20), (23) and (24) as

1
qw/qw, ss — 1 + 3* F(%)Z’;
n=1 "

exp [— %(c,,t*ﬁ] Ai [(c,:,g’ )2]

This expression represents the exact analytical
solution for the surface heat flux deduced from
the partial differential equation (4) and the side
conditions (5) and (6).

The first term on the right-hand side of
equation (25) corresponds to the steady state
part of the solution. The deviation from the
steady state is accounted for by the infinite

(25)

series. The number of terms required for the
numerical evaluation of the series depends on
how fast the exponential terms tend to zero.
Therefore the smaller the values of (c,t%) is
the more terms in the series are needed. In the
limit as t* -0 the form of equation (25)
becomes unsuitable for numerical computations.

REARRANGEMENT AND NUMERICAL
EVALUATION OF THE SOLUTION
Equation (25) can be expressed in a form
more convenient for numerical computations
if one uses the fact that the zeros of the Airy
function are represented asymptotically by the
simple expression [8}

%
¢, = [ig(% - 1)] .

For rn = 7 the values of ¢, can be calculated to
five significant figures from equation (26).
Equation (25) can be re-written with help of this
representation as

(26)

Qw/Qw, ss = 1+ Al + A!I (27)

where A, is the sum of the first six terms and Ay
is the remainder of the infinite series. The values
of ¢, in Ay are replaced by their asymptotic
expression ¢, Using the trapezoidal formula for
the approximate evaluation of integrals, [11]
p. 215-220 and [1], 4y can be represented by

Ay = Nt + A4, (t1) + EizH
=?%¢%m%%@mﬂ
7 n
[fet\? 3+ 1 2,
Ai [(c 32 ) } dn + 20((3) exp [— 53(6(‘5 ){l
[ .\ +
All:(-:;—*‘t ) ] + E(t) (28)

where o« = 9(37/8)%.

N(z*) represents the first, 4,(z*) the second
and E(r ™) the third term on the right-hand side
of the equation (28). The error term E(t™) is
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Table 1. The numerical evaluation of equation (35)

A Ay A4, A3 A As A N A, E G/ Q. ss
0-002 0-5867 0-3355 0-2485 0-2021 01727 01520 20-666 0-0683 0-0011 23-433
0-004 0-5867 0-3355 0-2485 02021 01726 0-1520 13-803 0-0683 0-0011 16:570
0-006 0-5867 03355 0-2485 02021 0-1726 0-1520 10-763 0-0683 00011 13-530
0-008 0-5866 0-3355 0-2484 0-2020 01726 0-1520 89503 00682 0-0011 11-717
0010 0-5866 0-3355 02483 02020 01725 01518 7-7137 0-0682 0-0011 16-480
0020 0-5865 0-3352 02479 02015 01719 01511 46473 0-0678 00011 74103
0-040 0-5858 0-3339 0-2462 01993 0-1693 0-1482 2-4898 0-0661 0-0010 5-2396
0-060 0-5846 0-3318 02432 0-1955 0-1647 0-1428 1-5513 0-0631 0-0009 42779
0-080 0-5829 0-3287 02388 0-1898 0-1579 0-1349 1-0122 0-0586 0-0009 3-7047
0-100 0-5807 03245 02328 01822 0-1488 01244 0-6665 0-0527 0-0009 3-3135
0-120 0-5780 03192 0-2252 0-1726 01374 01115 0-4344 0-0457 0-0009 30249
0-140 0-5746 03127 02161 01611 0-1240 0-0967 02764 00379 0-0009 2-8004
0-160 0-5706 0-3050 0-2053 01479 0-1090 0-0808 0:1700 0-0298 0-0009 2:6193
0-180 0-5660 0-2962 0-1930 0-1332 00932 0-0648 0-1001 00222 0-0007 2-4694
0-200 0-5608 0-2861 0-1795 01176 00771 0-0500 00559 00155 0-0003 2-3428
0250 0-5448 0-2561 01413 00778 0-0408 00200 0-0045 0-0099 0-0001, 2-0953
0300 0-5250 0-2203 0-1013 00433 00164 0-0054 0-0011 0-0008 0-0000 1-9136
0350 0-5001 0-1809 00650 0-0196 0-0047 0-0009 0-0001 0-0001 0 1-7714
0-400 04715 0-1408 00366 0-0070 0-0009 0-0001 0-0000 0-0000 0 1-6569
0-450 0-4392 0-1032 00178 0-0019 0-0001 0-0000 0 0 0 1-5622
0-500 0-4036 0-0707 00073 0-0004 0-0000 0 0 0 0 [-4820
0-550 0-3656 0-0450 0-0025 0-0001 0 0 0 0 0 1-4132
0-600 0-3259 00263 0-0007 0 0 0 0 0 0 1-3529
0650 0-2856 00141 0-0002 0 0 0 0 0 0 1-2999
0-700 02457 0-0068 0-0000 0 0 0 0 0 0 1-2525
0750 0-2073 00030 0 0 0 0 0 0 0 1-2103
0-800 01712 0-0012 0 0 0 0 0 0 0 11724
0-850 0-1383 0-0004 0 0 0 0 0 0 0 1-1387
0-900 0-1091 0-0001 0 0 0 0 0 0 0 1-1092
0950 0-0839 0-0000 0 0 0 0 0 0 0 1-0839
1-000 0-0628 0 0 0 0 0 0 0 0 1-0628
1-100 00323 0 0 0 0 0 0 0 0 1-0323
1-200 00147 0 0 0 0 0 0 0 0 1-:0147
1-:300 0-0058 0 0 0 0 0 0 0 0 1-0058
1-400 0-0020 0 0 0 0 0 0 0 0 1-0020
1-500 0-0006 0 0 0 0 0 0 0 0 1-0006
1-600 0-0001 0 0 0 0 0 0 0 0 1-0001
1-700 0-0000 0 0 0 0 0 0 0 0 1-0000
1-800 0 0 0 0 0 0 0 0 0 1-0000

shown in [11] and [1] to be bounded by

4 1
Ex*) = — Lif ;“(g) exp [— 237(5,;*)3]

RS

Carrying out the above differentiation results in
three terms. The terms which are multiplied by
(r*)? and (t*)® may be neglected. This is due to
the fact that A and E(t , ) are only of importance

(29)

n="7

at short times as will be seen in Table 1. Thus
equation (29) reduces to
2:3* () l:

2
E(T+) = Wexp - —(ar+)3]

(30)

It is shown in [1] that the product of the ex-
ponential and the Airy functions, which have
appeared repeatedly above, can be expressed
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in the infinite series form 3*rd
N@") = 2% 3ig

3% exp [— %(c,,mi“] Ai [(% T+)2] v ;
%{j z ¥exp(—2z)Ai [(%) ] dz

o) X
— (__l)m +\ym \/
- Zm! F(% — %m) (C,.‘C . 31 %W,+)30

m=0 _ . 3z
In order to evaluate the integral N(t*) in - f z ¥ exp (—z) Ai [(7)‘]02} (33)
equation (28), one first uses the substitution Y
2 [/3n\* - 3 The first integral can be readily evaluated if Ai
271\8 (4n — 1) =z (32 expressed in terms of K. If Ai is expressed in
terms of J_, and I in the second integral one
With this can rewrite it as an infinite series of the modified
80
Equation (35)
— — — One dimensional
70 conduction, equation (37}
— - — Asymptotic solution,
equation (38)
60
5-0
40
9w
Tnss

30
ENLARGED
ON FIG, 2
2-0 /
\\?—L;
-0

(0] 0-25 050 075 -0 1-25 I-50
’§
2.3

(x+)

T+=

FIG. 1. Heat-transfer response to a step in wall temperature.
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1-50 Equation {35)
\ — — — One dimensional conduction,
g equation (37}
140 \ — — Asymptotic solution, equation (38}
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F1G. 2. Heat-transfer response to a step in wall temperature.

Bessel functions of the first kind, see [ 12] pp. 100
and 107. However the final result is obtained in
a more compact form if the relationship (31) is
substituted in the second integral and the inte-
gration is carried out. One obtains then

W Id 1 2.3 1)
N(T)_T*\/n\/ﬁ‘ =
A6 (_l)m o
* (2m + Ym!' TG — 3$m) @™y (34)
m=0

The ratio q,/4,, . can now be expressed in a
form which is more suitable for numerical
computations, for small values of 7, than the
form given in equation (25) i.e.

qw/qw.ss =1 + Al + AZ + A3 + A4

+ As + A¢ + N + A, + E. (35)
¢ are the first six terms of the
infinite series in equation (25). N is defined by
equation (34), 4, is defined in equation (28) and

E is given by equation (30). The individual terms
in equation (35) have been evaluated numerically
on an IBM 7094 computer and the results are
presented in Table 1 together with the ratio
Gw/q.. s Which is also shown in Figs. 1 and 2.

DISCUSSION

The present solution for the surface heat flux
has been obtained by a double Laplace trans-
formation. Equation (25) represents the exact
analytical solution while equation (35) expresses
the result in a convenient computational form
within the error term E which is shown from
Table 1 to be extremely small.

The terms N, A, and E correspond to the
remainder of the series for n > 7 (ie. Ay of
equation 27). Their effects are shown in Table 1
to be of importance only at short times. The
¢ (i.e. Ap are the transient contri-
butions at large times. Each of these terms,
starting with A, tends to zero as t* gets larger
(see Table 1). The value q,./q,, ,, = 1 is attained
to five significant figures at t* = 1-7. It may be
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noted that the Prandt! number does not appear
as a separate parameter in the present problem.
The wall heat flux g,, is shown by equations (24)
and (25) to be proportional to ¢* at all times.

In order to examine the behavior of the
solution for short times, it is expanded in powers
of t*. The result is, [1],

1-0480
qy.'/ Qw, ss \/’C +

+ 69177 (r*)* + 10029 (z*)*
- 0.(z** ... (36)

Equation (36) shows that the solution is ex-
pressed, from the second term on, in integer
powers of t*. The first term on the right-hand
side of equation (36) appears as a result of the
use of the asymptotic form of the zeros of the
Airy function. It may be of interest to note that
analyses such as the one by Cess [2] and Riley
[4] have proceeded by assuming a priori a series
form of the wall heat flux as a function of 7",
This is not required in the present analysis.

As ©* — 0, equation (36) reduces to

1-0480

I
The above result is identical to the response of
the surface heat flux of a semi-infinite solid when
its boundary is suddenly brought to a tem-
perature T,, for t > 0. The same observation was
noted in references [2-5] and many others.

For large times the only term which controls
the approach to the steady state, as seen from
Table 1, is A,. If one uses the asymptotic
expansion of the Airy function, as 1% — w
equations (35) or (25) reduce, in the final decay
to the steady state, to

3#rd) 1
2Jymey (cytt)?

exp [— %(cl‘c“ﬁ]. (38)

Equation (38) shows that the steady state is
approached exponentially. A similar conclusion
was reached by Riley [4]. Equations (37) and (38),

M

- 01376 + 0.(z")

A/, ss ~ (37

qw/qw.ss ~ 1 +

177

valid for small and for large times respectively,
are shown also in Figs. 1 and 2.

At last we outline the method for the deter-
mination of the surface temperature due to a
time step ¢, in the surface heat flux. In this case
a dimensionless temperature is defined by T+ =
T k u,, a*/q,v and together with the variables
introduced in equation (3) there result once
more the equations (4} and (5) while the first
boundary condition in equation (6) is replaced
by

+
—%—i;(tﬂx*,O) =1, tt >0,
x>0 (39
Following the steps in the Analysis Section one
derives in place of equation (14) the following
expression for the transformed dimensionless
surface temperature in the (s, p) domain.

__Ais/pY)
sp* Ai'(s/p®y
The inversion with respect to s yields then

g 1
3#1G) pt

o 1
- )
"t >0, Rp)>0 (41)

where the ¢} are the zeros of Ai’ and are tabulated
in [8].

If one compares the infinite series part in
equation (41), i.e. F, .(t*, p; c,) with the corres-
ponding term in equation (20), i.e. F (t*, p; c,)
one deduces the following relationship between
the two functions

Fio(t*,psa) = [ Folt*,psc)det. (42)
t+

o(s, p, s) = (40)

L Hots, p,9)} =

On interchanging the order of integration the
inversion with respect to p yields then

g;l{Flm(t+, P’ C;)}
= [ LoUF(t*, p;c)} dtt. (43)
f+
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However, the inversion of the integrand on the
right-hand side has already been carried out in
the Analysis Section and one has only to replace
the value of ¢, by c, in this result according to
equation (43). On inverting also the first term in
equation (41) one obtains finally the quotient of
the transient surface temperature to its steady
state value

T 1

¥ =1 -T¢ -

T, « (3)2 c
i n=1

9}

2 .
j. exp [— 2—7{c;1+)3:|A1[(c;,r+/3*)2] det
(44)
where
Tusktso® _ .3_; (x ).

qoV '3
The integral in equation (44) can be readily
computed [12]. Making use of the asymptotic
representation for the zeros of Ai', i.e. ¢, one may
rearrange equation (44) in a form comparable
to equation (35) and obtain a useful form for
numerical evaluation.

CONCLUSION

Exact analytical solutions have been obtained
for the classical time-dependent Lévéque prob-
lem described by equation (4). These solutions
may serve as a reliable reference to check
techniques developed for the treatment of more
complicated problems. The initial behavior of
the solution reveals that for small times the
heat-transfer process is controlled by one
dimensional diffusion. For large times the solu-
tion demonstrates that the steady state heat-
transfer process is approached in an exponential
manner.
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APPENDIX
Evaluation of the inversion integral
Consider the two Argand planes p = y + ifs,
n =2 + iw and let

n=p (A-1)
in equation (22) with the result
Lot )} = 3
P 2nic,

jeXp(x+n3 —t*p?)dn  (A-2)
Dy

where D, is the mapped Bromwich path (ie.
y = 7o) in the »-plane. The principal branch of
p? maps the entire p-plane into the sector
bounded by the dashed lines in Fig. 3. If
equation (A-1) is expressed in terms of real and
imaginary parts there follows that the equation
of the path D, is given by

22— 3w =y, (A-3)
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The path D, is shown in Fig. 3, together with
its asymptotes which make an angle +n/6 with
positive real axis.

Now, choose y, = (c,t*/3x")® and use the
mapping function

(e’
T=13x7

in equation {A-2) to get

)(1-5), T=A+i®d (A4

Lot p)} = Lexp _ 2 c,tt)?
p n ’p Cn(x+)§~ 27 n
c,tt/3t et
5= || 5
Dy

27i
- %ﬁ3)] dﬁ}- (A-5)
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The equation of the path D, may be easily
obtained from equations (A-3) and (A-4) as

(1-2-3(1-D=1 (A-6)

A straightforward aplication of Cauchy’s Theo-
rem, shows that the path D, can be replaced by
a path D; running from oo exp(—2ni/3) to 0
and then to oo exp(+ 2ni/3) as shown in Fig. 4
together with the path D,. The term in brackets

@

\

Fi1G. 4. The #-plane.

in equation (A-5) with the integral taken along
the path D, is shown in reference [ 13] to be an
integral representation of the Airy function of
square argument. Hence equation (23) follows.

Résumé-—Le probléme classique de Lévéque en régime permanent est généralisé pour tenir compte de la

dépendance du temps. On présente des solutions analytiques exactes pour le flux de chaleur pariétal da

4 une variation en échelon dans le temps de la température pariétale et pour la température pariétale due

a une variation, en échelon dans le temps du flux de chaleur pariétal. Le comportement initial et final est

étudié théoriquement et pendant toute ’évolution temporelle, 'on y a ajouté une évaluation numérique,
dans le cas d’un échelon de température pariétale.

Zusammenfassung—Das klassische stationire Lévéque-Problem wird verallgemeinert um Zeitabhingig-
keiten zu beriicksichtigen. Exakte analytische Ldsungen werden angegeben fiir den Wirmefluss an der
Oberfliiche infolge eines Zeitschrittes in der Wandtemperatur und fiir die Wandtemperatur bei einem
Zeitschritt im Wirmestrom. Das Anfangs- und Endverhalten der Losung wird analytisch untersucht und
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durch eine numerische Auswertung fiir die gesamte Zeitspanne ergénzt fiir den Fall einer schrittweisen
Anderung der Wandtemperatur.

Anrgoranmus—HKnaccuyeckas craunosapHad 3anava Jleseka o0o0mena aa caydas ¢ yqerom
Bpemenudit 3aBucuMoctu. IlpuBefieHHl aHaJHTUYECKUe pelueHMA AU [BYX cay4aes: (1)
TeIIIOBOR TOTOK CTEHKH BHIZBAH BpeMeHHEIM CKAYKOM TeMIepaTypH Ha Helt ; (2) TemmepaTypa
NOBepXHOCTH OGYCIIOBJIEHA BpEMEHHFIM CKA4KOM TEIIOBOrO MOTOKa Ha Heft. HavameHoe u
1OHEeUHOe BpeMeHHe NOBejeHHe PEIeHUA H3YYAI0TCA AHATMTHYECKH , M YHCICHHO OTIpeNleIAeTcH
TIOJTHEI HEepPMO BpeMeHHU AJA CayYyas CKauyKooGpAazHOTO H3MEHEHHA TeMIIePATYPH CTEHKH.



